Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Nat Commun ; 15(1): 2229, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472182

RESUMO

Apoptosis occurs during development when a separation of tissues is needed. Synovial joint formation is initiated at the presumptive site (interzone) within a cartilage anlagen, with changes in cellular differentiation leading to cavitation and tissue separation. Apoptosis has been detected in phalangeal joints during development, but its role and regulation have not been defined. Here, we use a mouse model of brachydactyly type A1 (BDA1) with an IhhE95K mutation, to show that a missing middle phalangeal bone is due to the failure of the developing joint to cavitate, associated with reduced apoptosis, and a joint is not formed. We showed an intricate relationship between IHH and interacting partners, CDON and GAS1, in the interzone that regulates apoptosis. We propose a model in which CDON/GAS1 may act as dependence receptors in this context. Normally, the IHH level is low at the center of the interzone, enabling the "ligand-free" CDON/GAS1 to activate cell death for cavitation. In BDA1, a high concentration of IHH suppresses apoptosis. Our findings provided new insights into the role of IHH and CDON in joint formation, with relevance to hedgehog signaling in developmental biology and diseases.


Assuntos
Braquidactilia , Proteínas Hedgehog , Camundongos , Animais , Proteínas Hedgehog/metabolismo , Braquidactilia/genética , Braquidactilia/metabolismo , Articulações/metabolismo , Apoptose
2.
Life Sci Alliance ; 7(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331475

RESUMO

Brachydactyly type E (BDE), shortened metacarpals, metatarsals, cone-shaped epiphyses, and short stature commonly occurs as a sole phenotype. Parathyroid hormone-like protein (PTHrP) has been shown to be responsible in all forms to date, either directly or indirectly. We used linkage and then whole genome sequencing in a small pedigree, to elucidate BDE and identified a truncated disintegrin-and-metalloproteinase-19 (ADAM19) allele in all affected family members, but not in nonaffected persons. Since we had shown earlier that the extracellular domain of the parathyroid hormone receptor (PTHR1) is subject to an unidentified metalloproteinase cleavage, we tested the hypothesis that ADAM19 is a sheddase for PTHR1. WT ADAM19 cleaved PTHR1, while mutated ADAM-19 did not. We mapped the cleavage site that we verified with mass spectrometry between amino acids 64-65. ADAM-19 cleavage increased Gq and decreased Gs activation. Moreover, perturbed PTHR1 cleavage by ADAM19 increased ß-arrestin2 recruitment, while cAMP accumulation was not altered. We suggest that ADAM19 serves as a regulatory element for PTHR1 and could be responsible for BDE. This sheddase may affect other PTHrP or PTH-related functions.


Assuntos
Braquidactilia , Proteína Relacionada ao Hormônio Paratireóideo , Humanos , Proteína Relacionada ao Hormônio Paratireóideo/genética , Braquidactilia/genética , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Metaloproteases , Proteínas ADAM
3.
Mol Genet Genomic Med ; 12(2): e2393, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38407575

RESUMO

BACKGROUND: Brachydactyly type E (BDE) is a general term characterized by variable shortening of metacarpals and metatarsals, with phalanges affected frequently. It can occur as an isolated form or part of syndromes and manifest a high degree of phenotypic variability. In this study, we have identified the clinical characteristics and pathogenic causes of a four-generation pedigree with 10 members affected by BDE and short stature. METHODS: After the informed consent was signed, clinical data and peripheral blood samples were collected from available family members. Karyotype analysis, array-CGH, next-generation sequencing, and Sanger sequencing were employed to identity the pathogenic candidate gene. RESULTS: No translocation or microdeletion/duplication was found in karyotype analysis and array-CGH; hence, a novel heterozygous mutation, c.146dupA. p.S50Vfs*22, was detected by next-generation sequencing in PTHLH gene, leading to a premature stop codon. Subsequently, the mutation was confirmed by Sanger sequencing and co-segregation analysis. CONCLUSION: In this study, we described a novel heterozygous mutation (c.146dupA. p.S50Vfs*22) of gene PTHLH in a Chinese family. The mutation could induce a premature stop codon leading to a truncation of the protein. Our study broadened the mutation spectrum of PTHLH in BDE.


Assuntos
Braquidactilia , Nanismo , Humanos , Braquidactilia/genética , Códon sem Sentido , Mutação , Proteína Relacionada ao Hormônio Paratireóideo/genética
4.
Genes (Basel) ; 14(2)2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36833393

RESUMO

2q37 microdeletion/deletion syndrome (2q37DS) is one of the most common subtelomeric deletion disorders, caused by a 2q37 deletion of variable size. The syndrome is characterized by a broad and diverse spectrum of clinical findings: characteristic facial dysmorphism, developmental delay/intellectual disability (ID), brachydactyly type E, short stature, obesity, hypotonia in infancy, and abnormal behavior with autism spectrum disorder. Although numerous cases have been described so far, the exact mapping of the genotype and phenotype have not yet been achieved. MATERIALS AND METHODS: In this study we analyzed nine newly diagnosed cases with 2q37 deletion (3 male/6 female, aged between 2 and 30 years old), and followed up at the Iasi Regional Medical Genetics Centre. All patients were tested first with MLPA using combined kits P036/P070 subtelomeric screening mix and follow-up mix P264; after, the deletion size and location were confirmed via CGH-array. We compared our findings with the data of other cases reported in the literature. RESULTS: From nine cases, four had pure 2q37 deletions of variable sizes, and five presented deletion/duplication rearrangements (with chromosomes 2q, 9q, and 11p). In most cases, characteristic phenotypic aspects were observed: 9/9 facial dysmorphism, 8/9 global developmental delay and ID, 6/9 hypotonia, 5/9 behavior disorders, and 8/9 skeletal anomalies-especially brachydactyly type E. Two cases had obesity, one case had craniosynostosis, and four had heart defects. Other features found in our cases included translucent skin and telangiectasias (6/9), and a hump of fat on the upper thorax (5/9). CONCLUSIONS: Our study enriches the literature data by describing new clinical features associated with 2q37 deletion, and possible genotype-phenotype correlations.


Assuntos
Transtorno do Espectro Autista , Braquidactilia , Deficiência Intelectual , Humanos , Masculino , Feminino , Braquidactilia/diagnóstico , Braquidactilia/genética , Hipotonia Muscular , Estudos de Associação Genética , Deficiência Intelectual/genética , Obesidade
5.
Cytogenet Genome Res ; 162(5): 237-243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36516793

RESUMO

Brachydactyly mental retardation syndrome (BDMR) typically results from large deletions (>2-9 Mb) in distal 2q37. Haploinsufficiency of HDAC4 with incomplete penetrance has been proposed as the primary genetic cause of BDMR. To date, pure 2q37 deletions distal to HDAC4 were reported only in a limited number of individuals who share a subset of the clinical manifestations seen in cases with 2q37 deletions encompassing HDAC4. Here, we present a 4-year-old African American male who carries the smallest established 2q37.3 deletion distal to HDAC4 (827.1 kb; 16 OMIM genes). His clinical features that overlap with BDMR phenotypes include expressive-receptive language delay, behavioral issues, mild facial dysmorphism such as frontal bossing, and bilateral 5th finger brachydactyly and clinodactyly. The deletion was inherited from his mother with a history of learning difficulties and similar facial dysmorphism. This case provides important genotype-phenotype correlation information and suggests a 2q37 region distal to HDAC4 encompassing the HDLBP gene may contribute to a subset of clinical features overlapping with those seen in individuals with BDMR.


Assuntos
Braquidactilia , Deficiência Intelectual , Masculino , Humanos , Deficiência Intelectual/genética , Braquidactilia/genética , Deleção Cromossômica , Estudos de Associação Genética , Fenótipo , Cromossomos Humanos Par 2
6.
BMC Pediatr ; 22(1): 528, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064339

RESUMO

BACKGROUND: Brachydactyly type B is an autosomal dominant disorder that is characterized by hypoplasia of the distal phalanges and nails and can be divided into brachydactyly type B1 (BDB1) and brachydactyly type B2 (BDB2). BDB1 is the most severe form of brachydactyly and is caused by truncating variants in the receptor tyrosine kinase-like orphan receptor 2 (ROR2) gene. CASE PRESENTATION: Here, we report a five-generation Chinese family with brachydactyly with or without syndactyly. The proband and her mother underwent digital separation in syndactyly, and the genetic analyses of the proband and her parents were provided. The novel heterozygous frameshift variant c.1320dupG, p.(Arg441Alafs*18) in the ROR2 gene was identified in the affected individuals by whole-exome sequencing and Sanger sequencing. The c.1320dupG variant in ROR2 is predicted to produce a truncated protein that lacks tyrosine kinase and serine/threonine- and proline-rich structures and remarkably alters the tertiary structures of the mutant ROR2 protein. CONCLUSION: The c.1320dupG, p.(Arg441Alafs*18) variant in the ROR2 gene has not been reported in any databases thus far and therefore is novel. Our study extends the gene variant spectrum of brachydactyly and may provide information for the genetic counselling of family members.


Assuntos
Braquidactilia , Sindactilia , Braquidactilia/diagnóstico , Braquidactilia/genética , Ossos do Carpo/anormalidades , Feminino , Deformidades Congênitas do Pé , Deformidades Congênitas da Mão , Humanos , Linhagem , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Estribo/anormalidades , Sinostose , Ossos do Tarso/anormalidades
7.
Am J Med Genet A ; 188(10): 2969-2975, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35852485

RESUMO

ERF-related craniosynostosis syndrome type 4 (CRS4, OMIM #600775) is a rare autosomal dominant malformation syndrome, caused by pathogenic variants in the ERF gene and characterized by craniosynostosis, developmental delay, and dysmorphic features such as hypertelorism, exophthalmos, depressed nasal bridge, and retrognathia. So far, there are mostly individual reports and only a few descriptions of families with more than two affected patients, allowing statements about the penetrance of a certain variant and its variability only to a limited extent. In this study, we report an in-depth analysis of the clinical course of six family members from three generations with the novel heterozygous nonsense variant c.286A>T (p.Lys96*) in the ERF gene. At the time of examination, all of the six patients showed mild dysmorphic features and brachydactyly, five were overweight/obese and had delayed speech development, and four were short in stature. Hyperactivity, a short concentration span and a history of learning difficulties were found in half of the affected family members. To this day, none of the patients developed increased intracranial hypertension that would require surgical intervention. This work provides further information on the expressive variability of an ERF variant in six members of one family and focuses on the need for close neuropediatric surveillance.


Assuntos
Artrogripose , Braquidactilia , Craniossinostoses , Braquidactilia/genética , Craniossinostoses/diagnóstico , Craniossinostoses/genética , Craniossinostoses/patologia , Família , Heterozigoto , Humanos , Proteínas Repressoras/genética
8.
Mol Genet Genomics ; 297(5): 1195-1214, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35907958

RESUMO

Disorders that result from de-arrangement of growth, development and/or differentiation of the appendages (limbs and digit) are collectively called as inherited abnormalities of human appendicular skeleton. The bones of appendicular skeleton have central role in locomotion and movement. The different types of appendicular skeletal abnormalities are well described in the report of "Nosology and Classification of Genetic skeletal disorders: 2019 Revision". In the current article, we intend to present the embryology, developmental pathways, disorders and the molecular genetics of the appendicular skeletal malformations. We mainly focused on the polydactyly, syndactyly, brachydactyly, split-hand-foot malformation and clubfoot disorders. To our knowledge, only nine genes of polydactyly, five genes of split-hand-foot malformation, nine genes for syndactyly, eight genes for brachydactyly and only single gene for clubfoot have been identified to be involved in disease pathophysiology. The current molecular genetic data will help life sciences researchers working on the rare skeletal disorders. Moreover, the aim of present systematic review is to gather the published knowledge on molecular genetics of appendicular skeleton, which would help in genetic counseling and molecular diagnosis.


Assuntos
Deformidades Congênitas dos Membros , Braquidactilia/enzimologia , Braquidactilia/genética , Pé Torto Equinovaro/embriologia , Pé Torto Equinovaro/genética , Humanos , Deformidades Congênitas dos Membros/diagnóstico , Deformidades Congênitas dos Membros/embriologia , Deformidades Congênitas dos Membros/genética , Biologia Molecular , Polidactilia/embriologia , Polidactilia/genética , Sindactilia/embriologia , Sindactilia/genética
9.
Orthop Surg ; 14(9): 2386-2390, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35819086

RESUMO

Brachydactyly is a common feature of congenital hand anomalies characterized by shortening of the phalanges and/or metacarpals. Mutation of growth differentiation factor-5 (GDF5) may result in loss of appearance and function in brachydactyly type C (BDC). Herein, we describe an 11 year-old Chinese BDC patient with significant shortening of the 1st, 2nd, 3rd, and 5th digits. Notably, according to the analysis of metacarpophalangeal pattern profiles, we do not think the 4th digit appears unaffected as usual. In this patient a novel heterozygous frameshift mutation was identified (c.349delG) causing termination of translation after translating six amino acids from codon 117 (p.A117fs*6). This mutation is located in the propeptide region of GDF5, causing GDF5 haploinsufficiency in BDC. Considering our results expanding the genetic spectrum of BDC-causing mutations, further molecular analysis to diagnose and reclassify isolated brachydactyly on the basis of genotype rather than phenotype is warranted.


Assuntos
Braquidactilia , Ossos Metacarpais , Aminoácidos/genética , Braquidactilia/diagnóstico , Braquidactilia/genética , China , Mutação da Fase de Leitura , Humanos , Ossos Metacarpais/diagnóstico por imagem , Mutação
11.
Ann Plast Surg ; 89(1): 42-48, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35502951

RESUMO

BACKGROUND: Brachydactyly (BD) type C is a rare form of familial BD caused by GDF5 mutations. Some of the affected children have severe clinodactyly requiring surgery. The literature is limited to case reports. PATIENTS AND METHODS: The current retrospective study included 15 Saudi Arabian families with 42 affected children seen by the author for 25 years. A total of 23 digits (in 23 hands) underwent surgical correction of clinodactyly using a closing wedge osteotomy. The current study reports on the genetics, clinical presentation, radiological features, and midterm outcome of surgery. RESULTS: Genetic analysis was done in 6 families and confirmed the presence of 2 novel missense mutations (p.Met173Val in 3 families and p.Thr203Asn in 3 families) in the GDF5 gene. All cases in the study group demonstrated the classical clinical and radiographic features of BD type C. However, only 1 hand showed all the features of angel-shaped bony defect. The clinodactyly defect was mostly observed in the index or middle fingers. Surgery for the clinodactyly defect was only done if there was finger overlap. Closing wedge osteotomy was done in a total of 23 digits with a satisfactory outcome. CONCLUSIONS: This study represents the largest reported series of children undergoing surgery for correction of BD type C clinodactyly with a uniform technique performed by a single surgeon. The closing wedge osteotomy used resulted in good midterm outcomes, although long-term follow-up is lacking.


Assuntos
Braquidactilia , Braquidactilia/diagnóstico por imagem , Braquidactilia/genética , Braquidactilia/cirurgia , Criança , Humanos , Osteotomia/métodos , Estudos Retrospectivos , Arábia Saudita , Resultado do Tratamento
12.
J Bone Miner Res ; 37(3): 465-474, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34897794

RESUMO

Skeletal disorders, including both isolated and syndromic brachydactyly type E, derive from genetic defects affecting the fine tuning of the network of pathways involved in skeletogenesis and growth-plate development. Alterations of different genes of this network may result in overlapping phenotypes, as exemplified by disorders due to the impairment of the parathyroid hormone/parathyroid hormone-related protein pathway, and obtaining a correct diagnosis is sometimes challenging without a genetic confirmation. Five patients with Albright's hereditary osteodystrophy (AHO)-like skeletal malformations without a clear clinical diagnosis were analyzed by whole-exome sequencing (WES) and novel potentially pathogenic variants in parathyroid hormone like hormone (PTHLH) (BDE with short stature [BDE2]) and TRPS1 (tricho-rhino-phalangeal syndrome [TRPS]) were discovered. The pathogenic impact of these variants was confirmed by in vitro functional studies. This study expands the spectrum of genetic defects associated with BDE2 and TRPS and demonstrates the pathogenicity of TRPS1 missense variants located outside both the nuclear localization signal and the GATA ((A/T)GATA(A/G)-binding zinc-containing domain) and Ikaros-like binding domains. Unfortunately, we could not find distinctive phenotypic features that might have led to an earlier clinical diagnosis, further highlighting the high degree of overlap among skeletal syndromes associated with brachydactyly and AHO-like features, and the need for a close interdisciplinary workout in these rare patients. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Braquidactilia , Pseudo-Hipoparatireoidismo , Braquidactilia/diagnóstico , Braquidactilia/genética , Proteínas de Ligação a DNA/genética , Dedos/anormalidades , Doenças do Cabelo , Humanos , Síndrome de Langer-Giedion , Nariz/anormalidades , Hormônio Paratireóideo , Proteína Relacionada ao Hormônio Paratireóideo/genética , Pseudo-Hipoparatireoidismo/genética , Proteínas Repressoras/genética
13.
Eur J Med Genet ; 64(11): 104343, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34530144

RESUMO

Acrocapitofemoral dysplasia (ACFD) is a rare autosomal recessive skeletal dysplasia characterized by short stature with short limb dwarfism, brachydactyly, and a narrow thorax. Major radiographic features are egg-shaped capital femoral epiphyses with a short femoral neck and cone-shaped epiphyses, mainly in the hands and hips. To date, only four child patients from two families have been reported. We describe two adult patients with ACFD with a novel homozygous c.478C>T (p.Arg160Cys) mutation in IHH in the third family of the literature. The reported cases showed a middle phalanges which fused with distal phalanges in the fifth toes, the typical configuration of metacarpals, radial angulation and extremely short femoral neck. These findings could help the diagnosis of ACFD in adult patients. We hope that this new family will be a helpful guide for predicting and managing the prognosis of diagnosed children.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Braquidactilia/genética , Fêmur/anormalidades , Transtornos do Crescimento/genética , Proteínas Hedgehog/genética , Adulto , Doenças do Desenvolvimento Ósseo/patologia , Braquidactilia/patologia , Progressão da Doença , Epífises/anormalidades , Feminino , Fêmur/patologia , Colo do Fêmur/anormalidades , Falanges dos Dedos da Mão/anormalidades , Transtornos do Crescimento/patologia , Humanos , Mutação de Sentido Incorreto , Linhagem , Falanges dos Dedos do Pé/anormalidades
14.
Eur J Med Genet ; 64(7): 104226, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33872773

RESUMO

Different mutations in the Growth/Differentiation Factor 5 gene (GDF5) have been associated with varying types of skeletal dysplasia, including Grebe type chondrodysplasia (GTC), Hunter-Thompson syndrome, Du Pan Syndrome and Brachydactyly type C (BDC). Heterozygous pathogenic mutations exert milder effects, whereas homozygous mutations are known to manifest more severe phenotypes. In this study, we report a GDF5 frameshift mutation (c.404delC) segregating over six generations in an extended consanguineous Pakistani family. The family confirmed that both GTC and BDC are part of the GDF5 mutational spectrum, with severe GTC associated with homozygosity, and with a wide phenotypic variability among heterozygous carriers, ranging from unaffected non-penetrant carriers, to classical BDC and to novel unclassified types of brachydactylies.


Assuntos
Braquidactilia/genética , Fator 5 de Diferenciação de Crescimento/genética , Anormalidades Musculoesqueléticas/genética , Osteocondrodisplasias/genética , Braquidactilia/patologia , Feminino , Mutação da Fase de Leitura , Heterozigoto , Homozigoto , Humanos , Masculino , Anormalidades Musculoesqueléticas/patologia , Osteocondrodisplasias/patologia , Linhagem
15.
Mol Genet Genomic Med ; 9(3): e1594, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33486847

RESUMO

BACKGROUND: Brachydactylies are a group of inherited conditions, characterized mainly by the presence of shortened fingers and toes. Based on the patients' phenotypes, brachydactylies have been subdivided into 10 subtypes. In this study, we have identified a family with two members affected by brachydactyly type A2 (BDA2). BDA2 is caused by mutations in three genes: BMPR1B, BMP2 or GDF5. So far only two studies have reported the BDA2 cases caused by mutations in the BMPR1B gene. METHODS: We employed next-generation sequencing to identify mutations in culpable genes. RESULTS AND CONCLUSION: In this paper, we report a case of BDA2 resulting from the presence of a heterozygous c.1456C>T, p.Arg486Trp variant in BMPR1B, which was previously associated with BDA2. The next generation sequencing analysis of the patients' family revealed that the mutation occurred de novo in the proband and was transmitted to his 26-month-old son. Although the same variant was confirmed in both patients, their phenotypes were different with more severe manifestation of the disease in the adult.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Braquidactilia/genética , Adulto , Braquidactilia/patologia , Pré-Escolar , Humanos , Masculino , Mutação de Sentido Incorreto , Linhagem , Fenótipo
17.
J Med Genet ; 58(6): 415-421, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32817298

RESUMO

BACKGROUND: We describe two unrelated patients who display similar clinical features including telangiectasia, ectodermal dysplasia, brachydactyly and congenital heart disease. METHODS: We performed trio whole exome sequencing and functional analysis using in vitro kinase assays with recombinant proteins. RESULTS: We identified two different de novo mutations in protein kinase D1 (PRKD1, NM_002742.2): c.1774G>C, p.(Gly592Arg) and c.1808G>A, p.(Arg603His), one in each patient. PRKD1 (PKD1, HGNC:9407) encodes a kinase that is a member of the protein kinase D (PKD) family of serine/threonine protein kinases involved in diverse cellular processes such as cell differentiation and proliferation and cell migration as well as vesicle transport and angiogenesis. Functional analysis using in vitro kinase assays with recombinant proteins showed that the mutation c.1808G>A, p.(Arg603His) represents a gain-of-function mutation encoding an enzyme with a constitutive, lipid-independent catalytic activity. The mutation c.1774G>C, p.(Gly592Arg) in contrast shows a defect in substrate phosphorylation representing a loss-of-function mutation. CONCLUSION: The present cases represent a syndrome, which associates symptoms from several different organ systems: skin, teeth, bones and heart, caused by heterozygous de novo mutations in PRKD1 and expands the clinical spectrum of PRKD1 mutations, which have hitherto been linked to syndromic congenital heart disease and limb abnormalities.


Assuntos
Braquidactilia/genética , Displasia Ectodérmica/genética , Mutação , Proteína Quinase C/genética , Telangiectasia/genética , Adolescente , Braquidactilia/enzimologia , Displasia Ectodérmica/enzimologia , Feminino , Células HEK293 , Humanos , Masculino , Síndrome , Telangiectasia/enzimologia , Sequenciamento do Exoma , Adulto Jovem
18.
Bone ; 144: 115803, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33333243

RESUMO

INTRODUCTION: Brachydactyly is a bone development abnormality presenting with variable phenotypes and different transmission patterns. Mutations in GDF5 (Growth and Differentiation Factor 5, MIM *601146) account for a significant amount of cases. Here, we report on a three-generation family, where the proband and the grandfather have an isolated brachydactyly with features of both type A1 (MIM #112500) and type C (MIM #113100), while the mother shows only subtle hand phenotype signs. MATERIALS AND METHODS: Whole Exome Sequencing (WES) was performed on the two affected individuals. An in-depth analysis of GDF5 genotype-phenotype correlations was performed through literature reviewing and retrieving information from several databases to elucidate GDF5-related molecular pathogenic mechanisms. RESULTS: WES analysis disclosed a pathogenic variant in GDF5 (NM_000557.5:c.157dup; NP_000548.2:p.Leu53Profs*41; rs778834209), segregating with the phenotype. The frameshift variant was previously associated with Brachydactyly type C (MIM #113100), in heterozygosity, and with the severe Grebe type chondrodysplasia (MIM #200700), in homozygosity. In-depth analysis of literature and databases allowed to retrieve GDF5 mutations and correlations to phenotypes. We disclosed the association of 49 GDF5 pathogenic mutations with eight phenotypes, with both autosomal dominant and recessive transmission patterns. Clinical presentations ranged from severe defects of limb morphogenesis to mild redundant ossification. We suggest that such clinical gradient can be linked to a continuum of GDF5-activity variation, with loss of GDF5 activity underlying bone development defects, and gain of function causing disorders with excessive bone formation. CONCLUSIONS: Our analysis of GDF5 pathogenicity mechanisms furtherly supports that mutation and zygosity backgrounds resulting in the same level of GDF5 activity may lead to similar phenotypes. This information can aid in interpreting the potential pathogenic effect of new variants and in supporting an appropriate genetic counseling.


Assuntos
Braquidactilia , Anormalidades Musculoesqueléticas , Osteocondrodisplasias , Braquidactilia/genética , Estudos de Associação Genética , Fator 5 de Diferenciação de Crescimento/genética , Humanos , Mutação/genética , Linhagem , Fenótipo
19.
Am J Med Genet A ; 182(10): 2432-2436, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32789964

RESUMO

Brachydactyly type A (BDA) is defined as short middle phalanges of the affected digits and is subdivided into four types (BDA1-4). To date, the molecular cause is unknown. However, there is some evidence that pathogenic variants of HOXD13 could be associated with BDA3 and BDA4. Here, we report a Chinese autosomal dominant BDA3 pedigree with a novel HOXD13 mutation. The affected individuals presented with an obviously shorter fifth middle phalanx. The radial side of the middle phalanx was shorter than the ulnar side, and the terminal phalanx of the fifth finger inclined radially and formed classical clinodactyly. Interestingly, the index finger was normal. The initial diagnosis was BDA3. However, the distal third and fourth middle phalanges were also slightly affected, resulting in mild radial clinodactyly. Both feet showed shortening of the middle phalanges, which were fused to the distal phalanges of the second to the fifth toes, as reported in BDA4. Therefore, this pedigree had combined BDA3 and atypical BDA4. By direct sequencing, a 13 bp deletion within exon 1 of HOXD13 (NM_000523.4: c.708_720del13; NP_000514.2: p.Gly237fs) was identified. The 13 bp deletion resulted in a frameshift and premature termination of HOXD13. This study provides further evidences that variants in HOXD13 cause BDA3-BDA4 phenotypes.


Assuntos
Braquidactilia/genética , Predisposição Genética para Doença , Proteínas de Homeodomínio/genética , Sindactilia/genética , Fatores de Transcrição/genética , Adulto , Braquidactilia/diagnóstico , Braquidactilia/patologia , Éxons/genética , Feminino , Falanges dos Dedos da Mão/patologia , Mutação da Fase de Leitura/genética , Humanos , Masculino , Linhagem , Fenótipo , Deleção de Sequência/genética , Sindactilia/diagnóstico , Sindactilia/patologia , Dedos do Pé/patologia , Adulto Jovem
20.
BMC Med Genet ; 21(1): 144, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32631253

RESUMO

BACKGROUND: Autosomal dominant hypertension with brachydactyly type E syndrome caused by pathogenic variants in the PDE3A gene was first reported in 2015. To date, there are only a few reports of this kind of syndrome. Other patients still lack a genetic diagnosis. CASE PRESENTATION: Whole-exome sequencing was performed in an 18-year-old female proband with a clinical diagnosis of hypertension with brachydactyly syndrome. Quantitative real-time PCR was used to identify pathogenic copy number variations (CNVs). After bioinformatics analysis and healthy control database filtering, we revealed a heterozygous missense PDE3A variant (c.1346G > A, p.Gly449Asp). The variant was absent in the ExAC database and located in a highly evolutionarily conserved cluster of reported PDE3A pathogenic variants. Importantly, this variant was predicted to affect protein function by both SIFT (score = 0) and PolyPhen-2 (score = 1). After Sanger sequencing, the variant was determined to be absent in the healthy parents of the proband as well as 800 ethnically and geographically matched healthy controls. CONCLUSION: We present a report linking a de novo PDE3A variant to autosomal dominant hypertension with brachydactyly type E syndrome.


Assuntos
Braquidactilia/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Sequenciamento do Exoma , Genes Dominantes , Hipertensão/congênito , Mutação/genética , Adolescente , Braquidactilia/diagnóstico por imagem , Éxons/genética , Feminino , Humanos , Hipertensão/diagnóstico por imagem , Hipertensão/genética , Masculino , Linhagem , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...